‘Neulich nachts in Houston’

Monday’s Presidential Address offered a chance for Friedrich-Wilhelm Mohr to share his perspectives as EACTS President, his professional journey, as well as a few of his personal insights gleaned over more than 40 years of dedication to the field.

He was introduced with kind words from EACTS Vice-President Miguel Sousa Uva, who gave a short biography detailing Professor Mohr’s professional and personal milestones in life – accolades, it seems, which are as far-ranging as they are impressive. Stepping up to the podium, Professor Mohr had one key message running throughout his speech: we owe a lot to those who support us – both personally and professionally – in all of our endeavours.

The title of my speech is: ‘Neulich nachts in Houston’. You may wonder what this means?

I stand here today, as the president of EACTS, at the end of a long, exciting, beautiful and fulfilling professional journey as a surgeon. I would like to share some parts of this journey with you.

Last fall, I was invited to participate in the AATS board meeting in Houston, by my close friend and AATS president, Joseph Coselli. When I arrived in Houston, after a long flight, late in the afternoon I was extremely tired and headed up to the bar to have a beer and a burger.

On the way back to my room, all of a sudden, I was approached by Professor Song Wan from Hong Kong in the elevator.

He asked me directly: “What will be your presidential address?” My immediate response was: “I have no idea!”

This got me thinking and even dreaming all night, but I just could not find a suitable answer. I woke up in the middle of that night, and remember being in a similar hotel when I was a resident myself, and memories came flashing back to my mind, memories of more than 40 years.

So, the title of my presidential address ‘Neulich nachts in Houston’ represents a very special occasion or turning point in my professional life. ‘Neulich’, which is a German word, can mean the other night, recently, yesterday, the day before yesterday, or it can be a whole time frame. For me it represents a whole time frame, starting 40 years ago at a night in Houston, when I was 25 years old.

I visited the Texas Heart Institute to watch Denton Cooley and Michael DeBakey perform surgery.

At that time, cardiac surgery in Germany was still in its early days. But the pioneering work in the field, the work of Dr Cooley and Dr DeBakey, took place in Houston. This was well emphasised by Hans Boersch in his honoured guest lecture ‘Hands across the Ocean’ at the AATS in 1985. He referred to the period before the Second World War, when German surgeons used to visit Germany to learn thoracic surgery. It was particularly Professor Mikulicz who trained many American surgeons. His famous OR from 1897 is still the same. I visited the Texas Heart Institute to watch Denton Cooley and Michael DeBakey perform surgery.

At that time, cardiac surgery in Germany was still in its early days. But the pioneering work in the field, the work of Dr Cooley and Dr DeBakey, took place in Houston.

This was well emphasised by Hans Boersch in his honoured guest lecture ‘Hands across the Ocean’ at the AATS in 1985. He referred to the period before the Second World War, when American surgeons used to visit Germany to learn thoracic surgery. It was particularly Professor Mikulicz who trained many American surgeons. His famous OR from 1897 is still the same. I visited the Texas Heart Institute to watch Denton Cooley and Michael DeBakey perform surgery.

At that time, cardiac surgery in Germany was still in its early days. But the pioneering work in the field, the work of Dr Cooley and Dr DeBakey, took place in Houston.

This was well emphasised by Hans Boersch in his honoured guest lecture ‘Hands across the Ocean’ at the AATS in 1985. He referred to the period before the Second World War, when American surgeons used to visit Germany to learn thoracic surgery. It was particularly Professor Mikulicz who trained many American surgeons. His famous OR from 1897 is still the same. I visited the Texas Heart Institute to watch Denton Cooley and Michael DeBakey perform surgery.

At that time, cardiac surgery in Germany was still in its early days. But the pioneering work in the field, the work of Dr Cooley and Dr DeBakey, took place in Houston.
Hypertrophic obstructive cardiomyopathy (HOCM) is the most frequently inherited cardiovascular disease (prevalence in the general population of 1/500) which is characterised by significant left ventricular hypertrophy, especially in the inter-ventricular septum, combined with small-volume cardiac cavities. The transaortic surgical septal myectomy is the most commonly used technique to treat HOCM, and is associated with low operative morbidity and mortality and reduction of the outflow gradients. The 0.4% (17/3695 patients) composite operative mortality from five major high-volume centres in North America [Mayo and Cleveland clinic, Tufts medical Center (Boston), Toronto General (Ontario) and Mount Sinai-St.Luke’s and Roosevelt (New York)] highlights the role of dedicated HOCM units. The involvement of the mitral valve in the pathophysiology of HOCM has been addressed as systolic anterior motion (SAM)–related left ventricle out flow tract (LVOT) obstruction. Hypertrophic cardiomyopathy mitral malformations include leaflets elongation and a wide array of malformations of the papillary muscles (PM) and chordae that can be detected by transthoracic and transoesophageal echocardiography and by cardiac magnetic resonance. Because they participate fundamentally in the predisposition to SAM, they have increasingly been repaired surgically. Twenty-seven consecutive patients who underwent HOCM surgery at IRCCS-ISMETT from 2007 to 2016 were retrospectively reviewed in order to assess the role of the mitral valve (leaflet, chordae and PM) in the LVOT obstruction and the results of the surgical treatment. Indications for operation included patients with severe symptoms unresponsive to or intolerant of optimal medical therapy with LVOT pressure gradients greater than or equal to 50 mmHg (measured with Doppler echocardiography either under resting conditions and/or with provocation, preferably utilizing physiologic exercise). Secondary chordae tendineae tractioning the anterior mitral leaflet to the interventricular septum, and systolic anterior motion were detected in the majority of the patients. Anomalalous, hypertrophied, and fused PM with muscularis trabeculae hypertrophy were also commonly observed. Four patients had posterior leaflet redundancy. Secondary chordae, PM, and muscularis trabeculae resection, and PM splitting and elongation were added variably to septal myectomy. Nine procedures on mitral valve leaflets were performed. Long-term follow up was 4±2.8 years. There was no hospital mortality, and NYHA classification, LVOT gradient, mitral valve regurgitation and septum thickness were significantly reduced after surgery. The mitral valve substantially contributes to LVOT obstruction in patients with HOCM. Thus, surgical correction in addition to extended myectomy is recommended during surgery. Surgeons with expertise in mitral valve anatomy and extensive repair techniques, guided by a dedicated team for planning the proper operative strategy, can help guarantee the best operative results.
Full-page advert
273 x 394 mm
Modified reverse aortoplasty versus extended end-to-end anastomosis in surgery for coarctation of aorta: a prospective randomised study

Ilya Soynov, Igor Kornilov, Alexander Bogachev-Prokophiev and Alexander Karaskov, Novosibirsk State Research Institute of Circulation Pathology, Siberia, Russia

Currently there are different approaches to surgery for coarctation of aorta with distal aortic arch hypoplasia. One of the most preferable procedures is the modified reverse aortoplasty technique. This approach excludes the use of foreign materials, preserves the possibility of native aorta growth, and potentially reduces the rate of late complications.

We made a prospective randomised study of 54 neonates and infants with a mean age of 66.5 days (IQR 12; 94), with coarctation of the aorta and distal aortic arch hypoplasia. Patients were divided into two groups by surgical approach: modified reverse aortoplasty with subclavian flap (n=27), and extended ‘end-to-end’ anastomosis technique (n=27)(Figure 1).

There were 2 hospital deaths, 1 from each group, caused by the development of deteriorating enterocolitis in low-weight immature neonates both. The follow-up period was 25 (21; 30) months. Recoaartation of the aorta developed in 1 (3.8%) case after modified reverse aortoplasty, and in 2 (7.7%) patients after extended anastomosis. The only risk of recoarctation evidenced was low weight (OR (95% CI) 0.016 (0.001-0.51), p=0.047). All cases of recoarctation were successfully treated by balloon angioplasty. The most common late complication was residual arterial hypertension that was developed in 2 (7.7%) patients in the reverse aortoplasty group, and in 8 (30.8%) patients in the 'end-to-end' anastomosis group (p=0.03) (Figure 2). Risk factors for arterial hypertension included endocardial fibroelastosis (OR (95% CI) 211.8 (4.4; 10.13), p=0.007) and recoarctation aortic wall rigidity (OR (95% CI) 28.5 (2.3; 3.42), p=0.032). We identified 2 cases (7.7%) of distal aortic arch aneurysm in the modified reverse aortoplasty group (p=0.15); risk factors haven’t been established, but aneurysm in these cases was probably due to a weakness of the subclavian flap arterial wall (Figure 3). Modified reverse aortoplasty with left subclavian artery flap allows for a reduced rate of residual arterial hypertension at mid-term follow up; however, the potential risk of distal aortic arch aneurysm requires further study.

Figure 1. Surgical technique: A – modified reverse aortoplasty with subclavian flap. B – extended ‘end-to-end’ anastomosis.

Figure 2. Kaplan-Meyer freedom from arterial hypertension (where EEA refers to extended ‘end-to-end’ anastomosis).

Figure 3. The aortic aneurysm after modified reverse aortoplasty with subclavian flap technique.

Epicardial clip occlusion of left atrial appendage during cardiac surgery provides optimal surgical results and long term stability

Vojtěch Kurfirst, Hospital of Břeclav Civil, Czech Republic

Different techniques of surgical left atrial appendage LAA occlusion are routinely used during cardiac surgery procedures. The most common techniques are ligature, resection, suture closure, stapler resection, and epicardial clip occlusion. Criteria for complete LAA occlusion are usually lack of communication (flow) between the LAA and left atrium proper as well as no residual LAA stump greater than 1 cm. Besides the surgical methods of LAA occlusion, different types of catheter devices are available in clinical practice. The Watchman LAA occlusion device (Boston Scientific) is perhaps the most frequently implanted and clinically tested device of the percutaneous closure devices commercially available. Experience and trials such as PROTECT-AF, PREVAIL suggest that Watchman is not inferior to permanent anticoagulation in thromboembolic event prevention and is associated with less frequent bleeding complications than permanent anticoagulation. However, percutaneous devices are associated with a clinically significant rate of serious perioperative complications and are suitable only for a well-defined group of patients with suitable anatomy.

The purpose of our study was to evaluate long-term results of epicardial clip occlusion in patients undergoing a cardio procedure. 101 patients (mean age 65±6 years, 47 females) undergoing cardiac surgery procedures with epicardial clip occlusion of the left atrial appendage were enrolled into the study. The clip was placed from sternotomy, thoracotomy or from a thorascopic approach. For LAA occlusion the AtriClip or the second generation of the clip – the AtriClip Pro (Atricure, USA) was utilised. The implantable device is a self-closing external LAA occluder available in 4 sizes, from 35 mm to 50 mm. It consists of two nitinol springs joined with Dacron polyester fabric. The parallel compression planes symmetrically put pressure of 2-8 psi over the entire contact area. The clip is attached to a delivery system, from which it is released after transosophageal echocardiography (TEE) confirmation of closure is complete. Postoperative variables, such as thromboembolic events, clip stability, and endocardial leakage around the device were examined by TEE and/or computed tomography. Early mortality rate in this series was 8.9% due to non-device related reasons. Perioperative success of clip implantation was
The invasiveness of coronary artery bypass grafting remains considerable and has not decreased in over 40 years. The development of new minimally invasive methods in coronary surgery builds on the aspiration to optimise the results of surgical treatment of patients with coronary heart disease, especially those with an increased risk of complications associated with extracorporeal circulation, sternotomy and aortic manipulations. Minimally invasive multi-vessel coronary revascularisation methods are still being developed and established, which is why basic comparative studies of immediate and, even more so, long-term results are a matter of present and future research.

We evaluated hospital and mid-term results of the prospective randomised controlled trial (RCT) MICSREVS (Minimally Invasive Cardiac Surgery REVascularization Strategy), which compared the effectiveness of multivessel small thoracotomy coronary artery bypass grafting (MVST-CABG) versus off-pump (OPCABG) and on-pump coronary artery bypass grafting (ONCABG).

The RCT MICSREVS was started in January 2014. In accordance with the trial design, 150 patients were included, divided into 3 groups of 50 people. In group I, the MVST-CABG strategy was directed to perform multivessel arterial revascularisation via a left minithoracotomy on the beating heart, using the aortic no-touch technique. In control groups II (OPCABG) and III (ONCABG), conventional surgery was performed via median sternotomy. Inclusion criteria were comprised the following: multivessel coronary artery disease; II–IV Canadian Cardiovascular Society functional class of angina; patients at 1 month after acute myocardial infarction. Exclusion criteria comprised: previous CABG, single-vessel disease, need for emergency revascularisation. Randomisation was carried out by the blind method (‘envelopes’). Primary outcome measures were accepted death from any cause and major adverse cardiac and cerebrovascular events (MACCE). During the hospitalisation period, as well as 12 and 36 months following primary myocardial revascularisation, were planned as the control points.

Patients’ clinical characteristics did not differ significantly between treatment groups. Intraoperative blood loss in the MVST-CABG group was less than that in the OPCABG group and ONCABG group (p=0.001) (Table). The mean blood loss within the first day was lower in the MVST-CABG group compared with OPCABG (p=0.002) and ONCABG groups (p=0.007). The number of blood transfusions was lower in the MVST-CABG group compared with group II (p=0.015) and group III (p=0.001). The postoperative ventilation time was lower in the MVST-CABG group compared with ONCABG group (p=0.007). On average, patients with MVST-CABG demonstrated an associated trend toward shorter intensive care unit stay (p=0.53), new onset atrial fibrillation (p=0.081) versus ONCABG patients, and fewer deep wound infections versus OPCABG patients (p=0.078). The postoperative length of hospital stay (surgical department) was shorter in the MVST-CABG group [6.5 (5.0; 8.5) days] versus OPCABG group [8.5 (8.0; 10.0) days] (p=0.001) and ONCABG group [8.5 (8.0; 10.0) days] (p=0.008). Median time to return to full physical activity was markedly shorter in the MVST-CABG group [14 (7; 21) days] than in the OPCABG group [56 (42; 77) days] and ONCABG group [56 (44; 79) days] (p<0.001). No significant differences were observed in rates of severe in-hospital events (p=0.05), cumulative mid-term survival, and freedom from MACCE (p=0.05) (Figure).

In conclusion, the aortic no-touch technique in full arterial MVST-CABG was as safe as OPCABG and ONCABG, showing good results comparable with results of conventional surgery at in-hospital point of RCT MICSREVS. MVST-CABG is associated with fewer wound infections, less perioperative blood loss, shorter postoperative ventilation time and hospital length of stay, shorter time to return to full physical activity, and greater improvement in the physical health component of quality of life. MVST-CABG can be applied to the majority of multi-vascular patients saving the effectiveness during mid-term follow up.